290

Bioremediation for Sustainable Environmental Cleanup

Li, M., S. K. Cushing, H. Liang, S. Suri, D. Ma and N. Wu. 2013b. Plasmonic nanorice antenna on triangle nanoarray

for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal. Chem. 85(4): 2072–2078.

Li, S., Y. Li, J. Cao, J. Zhu, L. Fan and X. Li. 2014. Sulfur-doped graphene quantum dots as a novel fluorescent probe

for highly selective and sensitive detection of Fe3+. Anal. Chem. 86(20): 10201–7.

Li, J., X. Xing, J. Li, M. Shi, A. Lin, C. Xu and R. Li. 2018. Preparation of thiol-functionalized activated carbon from

sewage sludge with coal blending for heavy metal removal from contaminated water. Environl. pollut. 234:

677–683.

Liu, J., G. Lv, W. Gu, Z. Li, A. Tang and L. Mei. 2017. A novel luminescence probe based on layered double

hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. J. Mater. Chem.

5(20): 5024–5030.

Ma, H., H. Wang and C. Na. 2015. Microwave-assisted optimization of platinum-nickel nanoalloys for catalytic water

treatment Appl. Catal. B Environ. 163: 198–204.

Ma, Z., D. Zhao, Y. Chang, S. Xing, Y. Wu and Y. Gao. 2013. Synthesis of MnFe2 O4 and Mn–Co oxide core–shell

nanoparticles and their excellent performance for heavy metal removal. Dalt. Trans. 42(39): 14261–14267.

Maghsoudi, A. S., S. Hassani, K. Mirnia and M. Abdollahi. 2021. Recent advances in nanotechnology-based

biosensors development for detection of arsenic, lead, mercury, and cadmium. Int. J. Nanomed. 16: 803.

Masudy-Panah, S., R. Katal, N. D. Khiavi, E. Shekarian, J. Hu and X. Gong. 2019. A high-performance cupric

oxide photocatalyst with palladium light trapping nanostructures and a hole transporting layer for

photoelectrochemical hydrogen evolution. J. Mater. Chem. A 7: 22332–22345.

Mawia, A. M., S. Hui, L. Zhou, H. Li, J. Tabassum, C. Lai, J. Wang, G. Shao, X. Wei, S. Tang, J. Luo, S. Hu and

P. Hu. 2021. Inorganic arsenic toxicity and alleviation strategies in rice. J. Hazard. Mater. 408: 124751. https://

doi.org/10.1016/j.jhazmat.2020.124751.

Mukhopadhyay, R., D. Bhaduri, B. Sarkar, R. Rusmin, D. Hou, R. Khanam et al. 2020. Clay–polymer nanocomposites:

progress and challenges for use in sustainable water treatment. J. Hazard. Mater

. 383: 121

125.

Mulvihill, M., A. Tao, K. Benjauthrit, J. Arnold and P. Yang. 2008. Surface‐enhanced Raman spectroscopy for trace

arsenic detection in contaminated water. Angewandte Chemie International Edition. 47(34): 6456–60.

Nassar, N. N. 2012. Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview.

pp. 81–118. In: A. Bhatnagar [Ed.]. Application of Adsorbents for Water Pollution Control. Bentham Science

Publishers, India.

Niu, P., C. Fernández-Sánchez, M. Gich, C. Ayora and A. Roig. 2015. Electroanalytical assessment of heavy metals in

waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochimica Acta. 165: 155–161.

Patil, P. O., P. V. Bhandari, P. K. Deshmukh, S. S. Mahale, A. G. Patil, H. R. Bafna, K. V. Patel and S. B. Bari. 2017.

Green fabrication of graphene-based silver nanocomposites using agro-waste for sensing of heavy metals. Res.

Chem. Intermed. 43(7): 3757–3773.

Pereira, F. A., K. S. Sousa, G. R. Cavalcanti, M. G. Fonseca, A. G. de Souza and A. P. Alves. 2013. Chitosan­

montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions. Int. J. Biol.

Macromol. 61: 471–478.

Petty, J. T., J. Zheng, N. V. Hud and R. M. Dickson. 2004. DNA-templated Ag nanocluster formation. J. Am. Chem.

Soc. 126(16): 5207–5212.

Praveen, A., E. Khan, D. S. Ngiimei, M. Perwez, M. Sardar and M. Gupta. 2018. Iron oxide nanoparticles as nano­

adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J.

Plant Growth Regul. 37(2): 612–624.

Rahman, A. F. A., A. A. Jalil, S. Triwahyono, A. Ripin, F. F. A. Aziz, N. A. A. Fatah, N. F. Jaafar, C. N. C. Hitam,

N. F. M. Salleh and N. S. Hassan. 2011. Strategies for introducing titania onto mesostructured silica

nanoparticles targeting enhanced photocatalytic activity of visible-light-responsive Ti-MSN catalysts. J. Clean

Prod. 143: 1–12.

Rotaru, A., S. Dutta, E. Jentzsch, K. Gothelf and A. Mokhir 2010. Selective dsDNA‐templated formation of copper

nanoparticles in solution. Angewandte Chemie International Edition. 49(33): 5665–7.

Sabzehei, K., S. H. Hadavi, M. G. Bajestani and S. Sheibani. 2020. Comparative evaluation of copper oxide nano­

photocatalyst characteristics by formation of composite with TiO2 and Zno. Solid State Sci. 10: 106362.

Sakulthaew, C., C. Chokejaroenrat, A. Poapolathep, T. Satapanajaru and S. Poapolathep. 2017. Hexavalent chromium

adsorption from aqueous solution using carbon nano-onions (CNOs). Chemosphere. 184: 1

168–1174.

Sauer, M. 2003. Single‐molecule‐sensitive fluorescent sensors based on photoinduced intramolecular charge transfer.

Angewandte Chemie International Edition. 42(16): 1790–3.

Schopf, C., A. Martín and D. Iacopino. 2017. Plasmonic detection of mercury via amalgam formation on surface-

immobilized single Au nanorods. Sci. Technol. Adv. Mater. 18(1): 60–67.